
COP 4610L: Threading Part 2 Page 1 Mark Llewellyn ©

COP 4610L: Applications in the Enterprise
Fall 2006

Programming Multithreaded Applications in Java
Part 2

COP 4610L: Applications in the Enterprise
Fall 2006

Programming Multithreaded Applications in Java
Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4610/fall2006

COP 4610L: Threading Part 2 Page 2 Mark Llewellyn ©

Threads
• In the previous section of notes the thread examples all

involved threads which were unsynchronized. None of the
threads actually needed to communicate with one another
and they did not require access to a shared object.

• The threads we’ve seen so far fall into the category of
unrelated threads. These are threads which do different tasks
and do not interact with one another.

• A slightly more complex form of threading involves threads
which are related but unsynchronized. In this case, multiple
threads operate on different pieces of the same data structure.
An example of this type of threading is illustrated on the next
page with a threaded program to determine if a number is
prime.

COP 4610L: Threading Part 2 Page 3 Mark Llewellyn ©

//class for threaded prime number testing
//no inheritance issues so using the simple form of thread creation
class testRange extends Thread {

static long possPrime;
long from, to; //test range for a thread
//constructor

//record the number to be tested and the range to be tried
testRange(int argFrom, long argpossPrime) {

possPrime = argpossPrime;
if (argFrom ==0) from = 2; else from = argFrom;
to=argFrom+99;

}
//implementation of run
public void run() {

for (long i=from; i <= to && i<possPrime; i++) {
if (possPrime % i == 0) {

//i divides possPrime exactly
System.out.println("factor " + i + " found by thread " + getName());
break; //exit for loop immediately

}
yield(); //suspend thread

}
}

}

Prime Number Tester Class

COP 4610L: Threading Part 2 Page 4 Mark Llewellyn ©

//driver class to demonstrate threaded prime number tester
public class testPrime {

public static void main (String s[]) {
//number to be tested for primality is entered as a command line argument
//examples: 5557 is prime, 6841 is prime, 6842 is not prime
long possPrime = Long.parseLong(s[0]);

int centuries = (int) (possPrime/100) + 1;
for (int i=0; i<centuries;i++) {

new testRange(i*100, possPrime).start();
}

}
}

Driver Class for Prime
Number Tester

• This is an example of related but unsynchronized threads. In this case the
threads are related since they are each working on a piece of the same
data, but approach it from a slightly different perspective. However, they
are unsynchronized since they do not share information.

COP 4610L: Threading Part 2 Page 5 Mark Llewellyn ©

6841 is prime

2048 and 6842 are not
prime – their factors
are shown by the
thread which
discovered the factor.

COP 4610L: Threading Part 2 Page 6 Mark Llewellyn ©

Related and Synchronized Threads
• The most complicated type of threaded application involves

threads which interact with each other. These are related
synchronized threads.

• Without synchronization when multiple threads share an object
and that object is modified by one or more of the threads,
indeterminate results may occur. This is known as a data race
or race condition.

• The example on the following page illustrates a race condition.
In this example, we simulate a steam boiler and the reading of
its pressure. The program starts 10 unsynchronized threads
which each read the pressure of the boiler and if it is found to
be below the safe limit, the pressure in the boiler is increased by
15psi. Looking at the results you can clearly see the problem
with this approach.

COP 4610L: Threading Part 2 Page 7 Mark Llewellyn ©

// class to simulate a steam boiler to illustrate a race condition in unsynchronized threads
public class SteamBoiler {

static int pressureGauge = 0;
static final int safetyLimit = 20;
public static void main(String [] args) {

pressure []psi = new pressure[10];
for (int i = 0; i < 10; i++) {

psi[i] = new pressure();
psi[i].start();

}
//we now have 10 threads in execution to monitor the pressure
try {

for (int i = 0; i < 10; i++)
psi[i].join(); //wait for the thread to finish

}
catch (Exception e) { } //do nothing
System.out.println("Gauge reads " + pressureGauge + ", the safe limit is 20");

}
}

Class to Simulate a Steam Boiler – Pressure Gauge

COP 4610L: Threading Part 2 Page 8 Mark Llewellyn ©

Thread Class to Read Steam Boiler Pressure Gauge and
Increase the Pressure if Within Range

//thread class to raise the pressure in the Boiler
class pressure extends Thread {

void RaisePressure() {
if (SteamBoiler.pressureGauge < SteamBoiler.safetyLimit-15) {

//wait briefly to simulate some calculations
try {sleep(100); } catch (Exception e) { }
SteamBoiler.pressureGauge+= 15; //raise the pressure 15 psi
System.out.println("Thread " + getName() + " finds pressure within limits -

increases pressure");
}

else ; //the pressure is too high - do nothing
}// end RaisePressure
public void run() {

RaisePressure(); //this thread is to raise the pressure
}

}

COP 4610L: Threading Part 2 Page 9 Mark Llewellyn ©

This is what
caused the race

condition to occur.

Output From Execution
Illustrating the Race Condition

COP 4610L: Threading Part 2 Page 10 Mark Llewellyn ©

Interesting Note on Race Conditions
• You may remember the large North American power blackout that occurred on

August 14, 2003. Roughly 50 million people lost electrical power in a region
stretching from Michigan through Canada to New York City. It took three days
to restore service to some areas.

• There were several factors that contributed to the blackout, but the official report
highlights the failure of the alarm monitoring software which was written in C++
by GE Energy. The software failure wrongly led operators to believe that all was
well, and precluded them from rebalancing the power load before the blackout
cascaded out of control.

• Because the consequences of the software failure were so severe, the bug was
analyzed exhaustively. The root cause was finally identified by artificially
introducing delays in the code (just like we did in the previous example). There
were two threads that wrote to a common data structure, and through a coding
error, they could both update it simultaneously. It was a classic race condition,
and eventually the program “lost the race”, leaving the structure in an inconsistent
state. That in turn caused the alarm event handler to spin in an infinite loop,
instead of raising the alarm. The largest power failure in the history of the US
and Canada was caused by a race condition bug in some threaded C++ code.
Java is equally vulnerable to this kind of bug.

COP 4610L: Threading Part 2 Page 11 Mark Llewellyn ©

Thread Synchronization
• To prevent a race condition, access to the shared object must

be properly synchronized.

– Lost update problem: one thread is in the process of updating
the shared value and another thread also attempts to update the
value.

– Even worse is when only part of the object is updated by each
thread in which case part of the object reflects information
from one thread while another part of the same object reflects
information from another thread.

• The problem can be solved by giving one thread at a time
exclusive access to code that manipulates the shared object.
During that time, other threads desiring to manipulate the
object must be forced to wait.

COP 4610L: Threading Part 2 Page 12 Mark Llewellyn ©

Thread Synchronization (cont.)

• When the thread with exclusive access to the object finishes
manipulating the object, one of the blocked threads will be
allowed to proceed and access the shared object.

– The next selected thread will be based on some protocol. The
most common of these is simply FCFS (priority-queue based).

• In this fashion, each thread accessing the shared object
excludes all other threads from accessing the object
simultaneously. This is the process known as mutual
exclusion.

• Mutual exclusion allows the programmer to perform
thread synchronization, which coordinates access to
shared objects by concurrent threads.

COP 4610L: Threading Part 2 Page 13 Mark Llewellyn ©

Synchronization Techniques
• There have been many different methods used to synchronize

concurrent processes. Some of the more common ones are:

– Test and Set Instructions. All general purpose processors now have
this kind of instruction, and it is used to build higher-level
synchronization constructs. Test and set does not block, that must be
built on top of it.

– p and v semaphores. Introduced by Dijkstra in the 1960’s and was the
main synchronization primitive for a long time. Its easy to build
semaphores from test and set instructions. Semaphores are low-level
and can be hard for programmers to read and debug. For your
information the p is short for the Dutch words proberen te verlangen
which means to “try to decrement” and the v stands for verhogen
which means to increment.

COP 4610L: Threading Part 2 Page 14 Mark Llewellyn ©

Synchronization Techniques (cont.)

– Read/write Locks. These are also commonly referred to as mutexes
(although some people still use the term mutex to refer to a
semaphore.) A lock provides a simple ”turnstile”: only one thread at
a time can be going through (executing in) a block protected by a
lock. Again, it is easy to build a lock from semaphores.

– Monitors. A monitor is a higher-level synchronization construct built
out of a lock plus a variable that keeps track of some related
condition, such as “the number of unconsumed bytes in the buffer”.
It is easy to build monitors from read/write locks. A monitor defines
several methods as a part of its protocol. Two of those predefined
methods are wait() and notify().

COP 4610L: Threading Part 2 Page 15 Mark Llewellyn ©

Types of Synchronization
• There are two basic types of synchronization between

threads:
1. Mutual exclusion is used to protect certain critical sections of code

from being executed simultaneously by two or more threads.
(Synchronization without cooperation.)

2. Signal-wait is used when one thread need to wait until another thread
has completed some action before continuing. (Synchronization with
cooperation.)

• Java includes mechanisms for both types of synchronization.

• All synchronization in Java is built around locks. Every Java
object has an associated lock. Using appropriate syntax, you
can specify that the lock for an object be locked when a method
is invoked. Any further attempts to call a method for the locked
object by other threads cause those threads to be blocked until
the lock is unlocked.

COP 4610L: Threading Part 2 Page 16 Mark Llewellyn ©

Thread Synchronization In Java

• Any object can contain an object that implements the Lock
interface (package java.util.concurrent.locks).

• A thread calls the Lock’s lock method to obtain the lock.

• Once a lock has been obtained by one thread the Lock
object will not allow another thread to obtain the lock until
the thread releases the lock (by invoking the Lock’s
unlock method).

• If there are several threads trying to invoke method lock on
the same Lock object, only one thread may obtain the lock,
with all other threads being placed into the wait state.

COP 4610L: Threading Part 2 Page 17 Mark Llewellyn ©

An Aside on Reentrant Locks
• Class ReentrantLock (package java.util.concurrent.locks)

is a basic implementation of the Lock interface.

– The constructor for a ReentrantLock takes a boolean argument
that specifies whether the lock has a fairness policy. If this is set to
true, the ReentrantLock’s fairness policy states that the longest-
waiting thread will acquire the lock when it is available. If set to
false, there is no guarantee as to which waiting thread will acquire the
lock when it becomes available.

• Using a lock with a fairness policy helps avoid indefinite
postponement (starvation) but can also dramatically reduce
the overall efficiency of a program. Due to the large decrease
in performance, fair locks should be used only in necessary
circumstances.

COP 4610L: Threading Part 2 Page 18 Mark Llewellyn ©

Condition Variables
• If a thread that holds the lock on an object determines that it

cannot continue with its task until some condition is satisfied,
the thread can wait on a condition variable.

• This removes the thread from contention for the processor by
placing it in a wait queue for the condition variable and
releases the lock on the object.

• Condition variables must be associated with a Lock and are
created by invoking Lock method newCondition, which
returns an object that implements the Condition interface.

• To wait on a condition variable, the thread can call the
Condition’s await method (see Life Cycle of a thread in
previous set of notes).

COP 4610L: Threading Part 2 Page 19 Mark Llewellyn ©

Condition Variables (cont.)

• Invoking the await method, immediately releases the
associated Lock and places the thread in the wait state for
that Condition. Other threads can then try to obtain the
Lock.

• When a runnable thread completes a task and determines that
the waiting thread can now continue, the runnable thread can
call Condition method signal to allow a thread in that
Condition’s wait queue to return to the runnable state. At this
point, the thread that transitioned from the wait state to the
runnable state can attempt to reacquire the Lock on the object.
Of course there is no guarantee that it will be able to complete
its task this time and the cycle may repeat.

COP 4610L: Threading Part 2 Page 20 Mark Llewellyn ©

Condition Variables (cont.)

• If multiple threads are in a Condition’s wait queue when a
signal is invoked, the default implementation of
Condition signals the longest-waiting thread to move to
the runnable state.

• If a thread calls Condition method signalAll, then all of
the threads waiting for that condition move to the runnable
state and become eligible to reacquire the Lock.

• When a thread is finished with a shared object, it must invoke
method unlock to release the Lock.

COP 4610L: Threading Part 2 Page 21 Mark Llewellyn ©

Thread States With Synchronization

Thread attempting
access

Queue of threads waiting for lock

Already locked by
another thread

Running State

Queue of threads waiting for notify()

notify() by
another thread

wait() by this threadLock obtained
by this thread

Unlock by
another thread
– one in queue
moves to
running state

unlock by this thread
does not remove it from
the running state

COP 4610L: Threading Part 2 Page 22 Mark Llewellyn ©

Deadlock
• Deadlock will occur when a waiting thread (call it thread 1)

cannot proceed because it is waiting (either directly or
indirectly) for another thread (call it thread 2) to proceed.,
while simultaneously thread 2 cannot proceed because it is
waiting (either directly or indirectly) for thread 1 to proceed.

• When multiple threads manipulate a shared object using locks,
ensure that if one thread invokes await to enter the wait state
for a condition variable, a separate thread eventually will
invoke method signal to transition the waiting thread on the
condition variable back to the runnable state.

– If multiple threads may be waiting on the condition variable, a separate
thread can invoke method signalAll as a safeguard to ensure that all
of the waiting threads have another opportunity to perform their tasks.

COP 4610L: Threading Part 2 Page 23 Mark Llewellyn ©

Producer/Consumer Problem
Threads Without Synchronization

• In a producer/consumer relationship, the producer portion of an
application generates data and stores it in a shared object, and
the consumer portion of an application reads data from the
shared object.

– Common examples are print spooling, copying data onto CDs, etc.

• In a multithreaded producer/consumer relationship, a producer
thread generates data and places it in a shared object called a
buffer. A consumer thread reads data from the buffer.

• What we want to consider first is how logic errors can arise if
we do not synchronize access among multiple threads
manipulating shared data.

COP 4610L: Threading Part 2 Page 24 Mark Llewellyn ©

Producer/Consumer w/o Synchronization
• The following example sets up a producer and consumer thread

utilizing a shared buffer (code is on the webpage). The
producer thread generates the integer numbers from 1 to 10,
placing the values in the shared buffer. The consumer process
reads the values in the buffer and prints the sum of all values
consumed.

• Each value the producer thread writes into the buffer should be
consumed exactly once by the consumer thread. However, the
threads in this example are not synchronized.

– This means that data can be lost if the producer writes new data into
the buffer before the consumer has consumed the previous value.

– Similarly, data can be incorrectly duplicated if the consumer thread
consumes data again before the producer thread has produced the next
value.

COP 4610L: Threading Part 2 Page 25 Mark Llewellyn ©

Producer/Consumer w/o Synchronization
(cont.)

• Since the producer thread will produce the values from 1 to
10, the correct sum that should be 55.

• The consumer process will arrive at this value only if each
item produced by the producer thread is consumed exactly
once by the consumer thread. No values are missed and none
are consumed twice.

• I’ve set it up so that each thread writes to the screen what is
being produced and what is being consumed.

• Note: the producer/consumer threads are put to sleep for a
random interval between 0 and 3 seconds to emphasize the
fact that in multithreaded applications, it is unpredictable
when each thread will perform its task and for how long it
will perform the task when it has a processor.

COP 4610L: Threading Part 2 Page 26 Mark Llewellyn ©

// Producer's run method stores the values 1 to 10 in buffer.
import java.util.Random;
public class Producer implements Runnable{

private static Random generator = new Random();
private Buffer sharedLocation; // reference to shared object

// constructor
public Producer(Buffer shared) {

sharedLocation = shared;
} // end Producer constructor

// store values from 1 to 10 in sharedLocation
public void run() {

int sum = 0;
for (int count = 1; count <= 10; count++) {

try { // sleep 0 to 3 seconds, then place value in Buffer
Thread.sleep(generator.nextInt(3000)); // sleep thread
sharedLocation.set(count); // set value in buffer
sum += count; // increment sum of values
System.out.printf("\t%2d\n", sum);

} // end try
// if sleeping thread interrupted, print stack trace
catch (InterruptedException exception) {

exception.printStackTrace();
} // end catch

} // end for

System.out.printf("\n%s\n%s\n", "Producer done producing.",
"Terminating Producer.");

} // end method run
} // end class Producer

Producer Thread Class

Randomly
sleep the

thread for up
to 3 seconds

COP 4610L: Threading Part 2 Page 27 Mark Llewellyn ©

// Consumer's run method loops ten times reading a value from buffer.
import java.util.Random;
public class Consumer implements Runnable {

private static Random generator = new Random();
private Buffer sharedLocation; // reference to shared object
// constructor
public Consumer(Buffer shared) {

sharedLocation = shared;
} // end Consumer constructor
// read sharedLocation's value four times and sum the values
public void run() {

int sum = 0;
for (int count = 1; count <= 10; count++) {

// sleep 0 to 3 seconds, read value from buffer and add to sum
try {

Thread.sleep(generator.nextInt(3000));
sum += sharedLocation.get();
System.out.printf("\t\t\t%2d\n", sum);

} // end try
// if sleeping thread interrupted, print stack trace
catch (InterruptedException exception) {

exception.printStackTrace();
} // end catch

} // end for
System.out.printf("\n%s %d.\n%s\n",

"Consumer read values totaling", sum, "Terminating Consumer.");
} // end method run

} // end class Consumer

Consumer Thread Class

Randomly
sleep the

thread for up
to 3 seconds

COP 4610L: Threading Part 2 Page 28 Mark Llewellyn ©

Buffer Interface

// Buffer interface specifies methods called by Producer and Consumer.
public interface Buffer {

public void set(int value); // place int value into Buffer (WRITE)
public int get(); // return int value from Buffer (READ)

} // end interface Buffer

// UnsynchronizedBuffer represents a single shared integer.
public class UnsynchronizedBuffer implements Buffer {

private int buffer = -1; // shared by producer and consumer threads
// place value into buffer
public void set(int value) {

System.out.printf("Producer writes\t%2d", value);
buffer = value;

} // end method set

// return value from buffer
public int get() {

System.out.printf("Consumer reads\t%2d", buffer);
return buffer;

} // end method get
} // end class UnsynchronizedBuffer

Unsynchronized Buffer
Class

COP 4610L: Threading Part 2 Page 29 Mark Llewellyn ©

// Application shows two threads manipulating an unsynchronized buffer.
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class SharedBufferTest {
public static void main(String[] args){

// create new thread pool with two threads
ExecutorService application = Executors.newFixedThreadPool(2);

// create UnsynchronizedBuffer to store ints
Buffer sharedLocation = new UnsynchronizedBuffer();
System.out.println(" \t\t \tSum \tSum");
System.out.println("Action\t\tValue\tProduced\tConsumed");
System.out.println("------\t\t-----\t--------\t--------\n");

// try to start producer and consumer giving each of them access to SharedLocation
try {

application.execute(new Producer(sharedLocation));
application.execute(new Consumer(sharedLocation));

} // end try
catch (Exception exception) {

exception.printStackTrace();
} // end catch

application.shutdown(); // terminate application when threads end
} // end main

} // end class SharedBufferTest

Producer/Consumer
Driver Class

COP 4610L: Threading Part 2 Page 30 Mark Llewellyn ©

sharedLocation.set(count)

Producer Side Consumer Side

sharedLocation
(Buffer)

set method returns

sum += sharedLocation.get()

get method returns

Unsynchronized Case

running running

Both the producer
and consumer
threads are always in
the running state –
never blocked.

COP 4610L: Threading Part 2 Page 31 Mark Llewellyn ©

The unsynchronized threads did not
produce the same sum. The producer
produced values that sum to 55, but the
consumer consumed values that sum to
84! Notice that the consumer read the
both value 9 and 10 four times but failed to
read the value of several values at all (e.g.
1 and 5).

COP 4610L: Threading Part 2 Page 32 Mark Llewellyn ©

In this execution, the sum
produced by the consumer
is much closer to the correct
result, but still off because
the consumer read the
values 2 and 5 twice and
failed to read the values 1, 3
and 4 at all.

COP 4610L: Threading Part 2 Page 33 Mark Llewellyn ©

// SynchronizedBuffer synchronizes access to a single shared integer.
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.Condition;
public class SynchronizedBuffer implements Buffer
{

// Lock to control synchronization with this buffer
private Lock accessLock = new ReentrantLock();
// condition variables to control reading and writing
private Condition canWrite = accessLock.newCondition();
private Condition canRead = accessLock.newCondition();

private int buffer = -1; // shared by producer and consumer threads
private boolean occupied = false; // whether buffer is occupied
// place int value into buffer
public void set(int value)
{

accessLock.lock(); // lock this object
// output thread information and buffer information, then wait
try
{

// while buffer is not empty, place thread in waiting state
while (occupied)
{

System.out.println("Producer tries to write.");
displayState("Buffer full. Producer waits.");
canWrite.await(); // wait until buffer is empty

} // end while

Synchronized Buffer
Class

No fairness policy needed since only a
single producer thread and single
consumer thread

Condition variables on the lock.
Condition canWrite contains a
queue for threads waiting to
write while the buffer is full. If
the buffer is full the Producer
calls method await on this
condition. When the Consumer
reads data from a full buffer, it
calls method signal on this
Condition. Condition canRead
contains a queue for threads
waiting while the buffer is
empty. If the buffer is empty the
Consumer calls method await
on this Condition. When the
Producer writes to the empty
buffer, it will call method signal
on this Condition.

Acquire lock

COP 4610L: Threading Part 2 Page 34 Mark Llewellyn ©

buffer = value; // set new buffer value
// indicate producer cannot store another value
// until consumer retrieves current buffer value
occupied = true;
displayState("Producer writes " + buffer);
// signal thread waiting to read from buffer
canRead.signal();

} // end try
catch (InterruptedException exception) {

exception.printStackTrace();
} // end catch
finally {

accessLock.unlock(); // unlock this object
} // end finally

} // end method set

// return value from buffer
public int get() {

int readValue = 0; // initialize value read from buffer
accessLock.lock(); // lock this object
// output thread information and buffer information, then wait
try {

// while no data to read, place thread in waiting state
while (!occupied) {

System.out.println("Consumer tries to read.");
displayState("Buffer empty. Consumer waits.");
canRead.await(); // wait until buffer is full

} // end while

Signal Consumer thread that a value
has been produced and can be read.

Unlock object before exiting method

Acquire lock on the buffer

Consumer must wait until a value
has been produced by the
Producer. Await signal by
Producer

COP 4610L: Threading Part 2 Page 35 Mark Llewellyn ©

// indicate that producer can store another value
// because consumer just retrieved buffer value
occupied = false;
readValue = buffer; // retrieve value from buffer
displayState("Consumer reads " + readValue);
// signal thread waiting for buffer to be empty
canWrite.signal();

} // end try
// if waiting thread interrupted, print stack trace
catch (InterruptedException exception) {

exception.printStackTrace();
} // end catch
finally {

accessLock.unlock(); // unlock this object
} // end finally

return readValue;
} // end method get

// display current operation and buffer state
public void displayState(String operation)
{

System.out.printf("%-40s%d\t\t\t\t%b\n", operation, buffer,
occupied);

} // end method displayState
} // end class SynchronizedBuffer

Signal waiting Producer that
the buffer is empty and it can
write

Make sure lock is released

COP 4610L: Threading Part 2 Page 36 Mark Llewellyn ©

// Application shows two threads manipulating a synchronized buffer.
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class SharedBufferTest2
{

public static void main(String[] args)
{

// create new thread pool with two threads
ExecutorService application = Executors.newFixedThreadPool(2);

// create SynchronizedBuffer to store ints
Buffer sharedLocation = new SynchronizedBuffer();
System.out.println("Using Standard Locking");
System.out.printf("%-40s%s\t\t%s\n%-40s%s\n\n", "Operation",

"Buffer Contents", "Occupied", "---------", "---------------\t\t--------");

try { // try to start producer and consumer
application.execute(new Producer(sharedLocation));
application.execute(new Consumer(sharedLocation));

} // end try
catch (Exception exception)
{

exception.printStackTrace();
} // end catch

application.shutdown();
} // end main

} // end class SharedBufferTest2

Driver Class For Illustrating
Synchronization In
Producer/Consumer Problem

Only change between
SharedBufferTest for
unsynchronized version

COP 4610L: Threading Part 2 Page 37 Mark Llewellyn ©

accessLock.unlock(); //release lock

Producer Side Consumer Side

sharedLocation
(Buffer)

set method returns

readValue= buffer;

get method returns

Synchronized Case

accessLock.lock(); //acquire lock

while (occupied) //buffer not empty

canWrite.await(); block on condition

buffer = value; //perform write

occupied = true; //indicate write

canRead.signal(); //signal thread

canWrite condition queue

no

signal from consumer

lock acquisition queue

accessLock.lock(); //acquire lock

write

while (!occupied) //buffer empty

no

canRead.await(); block

canRead condition queue

occupied = false; //indicate read

signal from producer

canWrite.signal(); //signal thread

accessLock.unlock(); //release lock

released

read

released

wait wait

COP 4610L: Threading Part 2 Page 38 Mark Llewellyn ©

Producer Thread

Consumer Thread

Running

Running

Blocked

accessLock queue

canWrite condition queue

canRead condition queue

buffer full (occupied)

canWrite signaled

lock request fails

lock released

lock request fails

buffer empty

canRead signaled

State Diagram – Synchronized Version

COP 4610L: Threading Part 2 Page 39 Mark Llewellyn ©

Both the Producer and Consumer
threads produced the same sum –
synchronized threads

COP 4610L: Threading Part 2 Page 40 Mark Llewellyn ©

COP 4610L: Threading Part 2 Page 41 Mark Llewellyn ©

Monitors and Monitor Locks

• Another way to perform synchronization is to use Java’s built-in
monitors. Every object has a monitor. Strictly speaking, the monitor is
not allocated unless it is used.

• A monitor allows one thread at a time to execute inside a synchronized
statement on the object. This is accomplished by acquiring a lock on the
object when the program enters the synchronized statement.

• Where object is the object whose monitor lock will be acquired.

• If there are several synchronized statements attempting to execute on an
object at the same time, only one of them may be active on the object at
once – all the other threads attempting to enter a synchronized statement
on the same object are placed into the blocked state (see next page).

synchronized (object)
{

statements
} //end synchronized statement

COP 4610L: Threading Part 2 Page 42 Mark Llewellyn ©

Monitors and Monitor Locks (cont.)

• When a synchronized statement finishes executing, the monitor lock
on the object is released and the highest priority blocked thread
attempting to enter a synchronized statement proceeds.

• Java also allows synchronized methods. A synchronized method is
equivalent to a synchronized statement enclosing the entire body of a
method.

• If a thread obtains the monitor lock on an object and then discovers
that it cannot continue with its task until some condition is satisfied,
the thread can invoke Object method wait, releasing the monitor
lock on the object. This will place the thread in the wait state.

• When a thread executing a synchronized statement completes or
satisfies the condition on which another thread may be waiting, it can
invoke Object method notify to allow a waiting thread to transition
to the blocked state again.

COP 4610L: Threading Part 2 Page 43 Mark Llewellyn ©

Thread Class to Read Steam Boiler Pressure Gauge and
Increase the Pressure if Within Range

Synchronized Method Version

//thread class to raise the pressure in the Boiler
class pressure extends Thread {

synchronized void RaisePressure() {
if (SteamBoiler.pressureGauge < SteamBoiler.safetyLimit-15) {

//wait briefly to simulate some calculations
try {sleep(100); } catch (Exception e) { }
SteamBoiler.pressureGauge+= 15; //raise the pressure 15 psi
System.out.println("Thread " + getName() + " finds pressure within limits

- increases pressure");
}
else ; //the pressure is too high - do nothing

}
public void run() {

RaisePressure(); //this thread is to raise the pressure
}

}

COP 4610L: Threading Part 2 Page 44 Mark Llewellyn ©

COP 4610L: Threading Part 2 Page 45 Mark Llewellyn ©

Mutual Exclusion Over a Block of Statements
• Applying mutual exclusion to a block of statements rather

than to an entire class or an entire method is handled in much
the same manner, by attaching the keyword synchronized
before a block of code.

• You must explicitly mention in parentheses the object whose
lock must be acquired before the block can be entered.

• The following example illustrates mutual exclusion over a
block using the pressure gauge example on pages 7 and 8.

COP 4610L: Threading Part 2 Page 46 Mark Llewellyn ©

Thread Class to Read Steam Boiler Pressure Gauge and
Increase the Pressure if Within Range – Synchronized Version

//thread class to raise the pressure in the Boiler
class pressure extends Thread {
static Object O = new Object();
void RaisePressure() {

synchronized(O) {
if (SteamBoiler.pressureGauge < SteamBoiler.safetyLimit-15) {

//wait briefly to simulate some calculations
try {sleep(100); } catch (Exception e) { }

SteamBoiler.pressureGauge+= 15; //raise the pressure 15 psi
System.out.println("Thread " + this.getName() + " finds pressure within limits - increases pressure");

}
else

System.out.println("Thread" + this.getName() + " finds pressure too high - do nothing");
} //end synchronized block

}
public void run() {

RaisePressure(); //this thread is to raise the pressure
}

}

Synchronized statement
requires an Object to lock.

Synchronized
block

COP 4610L: Threading Part 2 Page 47 Mark Llewellyn ©

Each thread sleeps for
100 msec before checking
pressure gauge

COP 4610L: Threading Part 2 Page 48 Mark Llewellyn ©

Increased limit from
earlier example

Each thread immediately
checks pressure gauge.

COP 4610L: Threading Part 2 Page 49 Mark Llewellyn ©

Caution When Using Synchronization
• As with any multi-threaded application, care must be taken

when using synchronization to achieve the desired effect and
not introduce some serious defect in the application.

• Consider the variation of the pressure gauge example that
we’ve been dealing with on the following page. Study the
code carefully and try to determine if it will achieve the same
effect as the previous version of the code.

• Is it correct? Why or why not?
No! The “this” object is one of the 10 different threads that are created.
Each thread will successfully grab its own lock, and there will be no
exclusion between the different threads.

Synchronization excludes threads working on the same object; it does
not synchronize the same method on different objects!

COP 4610L: Threading Part 2 Page 50 Mark Llewellyn ©

Does this code correctly synchronize the pressure gauge reading threads?

//thread class to raise the pressure in the Boiler
class pressure extends Thread {

synchronized void RaisePressure() {
if (SteamBoiler.pressureGauge < SteamBoiler.safetyLimit-15) {
//wait briefly to simulate some calculations
try {sleep(100); } catch (Exception e) { }

SteamBoiler.pressureGauge+= 15; //raise the pressure 15 psi
System.out.println("Thread " + this.getName() + " finds pressure within limits - increases pressure");

}
else

System.out.println("Thread" + this.getName() + " finds pressure too high - do nothing");

}
public void run() {

RaisePressure(); //this thread is to raise the pressure
}

}

