COP 4610L: Applications in the Enterprise

Fall 2006
Programming Multithreaded Applications in Java
Part 2
Instructor : Mark Llewellyn

markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4610/fall2006

School of Electrical Engineering and Computer Science
University of Central Florida

COP 4610L: Threading Part 2 Page 1 Mark Llewellyn ©

Threads

In the previous section of notes the thread examples all
Involved threads which were unsynchronized. None of the
threads actually needed to communicate with one another
and they did not require access to a shared object.

The threads we’ve seen so far fall into the category of
unrelated threads. These are threads which do different tasks
and do not interact with one another.

A slightly more complex form of threading involves threads
which are related but unsynchronized. In this case, multiple
threads operate on different pieces of the same data structure.
An example of this type of threading is illustrated on the next
page with a threaded program to determine if a number is

prime.

r
0 k | ¥]
COP 4610L: Threading Part 2 Page 2 Mark Llewellyn © \:“*S\/

/class for threaded prime number testing
//no inheritance issues so using the simple form of thread creation
class testRange extends Thread {
static long possPrime;
long from, to; //test range for a thread
//constructor
/lrecord the number to be tested and the range to be tried
testRange(int argFrom, long argpossPrime) {
possPrime = argpossPrime;
if (argFrom ==0) from = 2; else from = argFrom;
to=argFrom+99;
by
/limplementation of run
public void run() {
for (long i=from; i <= to && i<possPrime; i++) {
if (possPrime % i ==0) {
/1 divides possPrime exactly

Prime Number Tester Class

System.out.printin("factor " + i + " found by thread " + getName());

break; //exit for loop immediately

}
yield(); //suspend thread
}
}
}

COP 4610L: Threading Part 2 Page 3

r
Mark Llewellyn © g/'j

Driver Class for Prime
Number Tester

/[driver class to demonstrate threaded prime number tester
public class testPrime {
public static void main (String s[]) {
/Inumber to be tested for primality is entered as a command line argument
/lexamples: 5557 is prime, 6841 is prime, 6842 is not prime
long possPrime = Long.parseLong(s[0]);
int centuries = (int) (possPrime/100) + 1;
for (int i=0; i<centuries;i++) {
new testRange(i*100, possPrime).start();

}

This is an example of related but unsynchronized threads. In this case the
threads are related since they are each working on a piece of the same
data, but approach it from a slightly different perspective. However, they
are unsynchronized since they do not share information.

COP 4610L: Threading Part 2 Page 4 Mark Llewellyn © g/j

Project Messages Settings Window Tools UL Help

iles

w | |[Sort By Hame

ey

+

R

Bookmarks

rugram FllesLJauauuM h.0hin

TahhedPaneWehBruwser$Exltn.c'tmn class
TabbedPaneWehBrowser $NewTabAction.cla

TabbedPaneWebBrowser.class
TabbedPaneVWehBrowser.java
testPrime.class

testPrime.java

testRange.class

testRange.java

Dwse LFind | Debug | Workbench |

[&] cur... | [&] Buf... | [E] co... | [£]Pr... | [&]un... | [&]Sh... |[&] Thr... |[S] Thr... | [&] Ba... | [&] Sh... | [E]tes... | [&]te

testPrime.java C:Program Files\Javaljdk1.5.0\bin - jGRASP CSD (Java)
FIIE! Edit Wiew Templates Compiler Bun Workbench Help

T PDPWEY aEEE +40eolE XDBa

= Run Arguments: |5842

Sfdriver class to demonstrate threaded prime mumber tester

public class testPrime {

public static wvoid main (String s[]) {
S/mumber Lo be tested for primality iz entered as a command line argqument
Slexanples: 5557 is prime, 684l is prime, 6542 is not primEL

[4] Il | | »]
EEE ji'i LK Line:5 Cok63 Code:d Top:1

mpile Messages erHASP Messanges |/Fum 10 |

End

Clear

Help

r ———-=JGRALSP exec:

- ——-—-J]GBAZP exec:

- ———-—JGEALP exec:

java testPrime 6541

—-=—=JGRAZP: operation complete.

java testPrime 6542

jawva testPrime 20458

factor 2 found by thread Thread-0
factor 512 found by thread Thread-5

factor 128 found by thread Thread-1
factor 1024 found by thread Thread-10
factor 256 found by thread Thread-:2
2048 and 6842 are not

—-——-jGRASP: operation complete.

prime — their factors
are shown by the
thread which
discovered the factor.

A

6841 is prime

factor 2 found by thread Thread-0
factor 311 found by thread Thread-3
factor 622 found by thread Thread-6&
factor 3421 found by thread Thread-34

1

] [b

Related and Synchronized Threads

The most complicated type of threaded application involves
threads which interact with each other. These are related
synchronized threads.

Without synchronization when multiple threads share an object
and that object i1s modified by one or more of the threads,
Indeterminate results may occur. This Is known as a data race
or race condition.

The example on the following page illustrates a race condition.
In this example, we simulate a steam boiler and the reading of
Its pressure. The program starts 10 unsynchronized threads
which each read the pressure of the boiler and if it is found to
be below the safe limit, the pressure in the boiler Is increased by
15psi. Looking at the results you can clearly see the problem

with this approach.

\

COP 4610L: Threading Part 2 Page 6 Mark Llewellyn © S}'j

Class to Simulate a Steam Boiler — Pressure Gauge

/I class to simulate a steam boiler to illustrate a race condition in unsynchronized threads
public class SteamBoiler {
static int pressureGauge = 0;
static final int safetyLimit = 20;
public static void main(String [] args) {
pressure []psi = new pressure[10];
for (inti=0;i<10;i++) {
psi[i] = new pressure();
psi[i].start();
¥
/lwe now have 10 threads in execution to monitor the pressure
try {
for (inti=0;1<10; i++)
psi[i].join(); //wait for the thread to finish
¥

catch (Exception e) { } //do nothing
System.out.printin("Gauge reads " + pressureGauge + ", the safe limit is 20");

COP 4610L: Threading Part 2 Page 7 Mark Llewellyn ©

Thread Class to Read Steam Boiler Pressure Gauge and
Increase the Pressure if Within Range

/lthread class to raise the pressure in the Boiler
class pressure extends Thread {
void RaisePressure() {
If (SteamBoiler.pressureGauge < SteamBoiler.safetyLimit-15) {
/Iwait briefly to simulate some calculations
try {sleep(100); } catch (Exceptione) { }
SteamBoiler.pressureGauge+= 15; //raise the pressure 15 psi
System.out.printin("Thread " + getName() + " finds pressure within limits -
increases pressure™);
b
else ; //the pressure is too high - do nothing
}/ end RaisePressure
public void run() {
RaisePressure(); //this thread is to raise the pressure

}
}

COP 4610L: Threading Part 2 Page 8 Mark Llewellyn ©

Project Messages Settings Window Tools

LML

Help

iles -

Sort By Name -

= |t|R

Bookmarks

rogram Files\Javajdk1.5.0hin

SOLClient$2.class
SQLClient$3.class
SQLClient$4.class
SOLClient.class
SOLClient.html
SOLChent.java
S5l Store
SteamBoiler.class
SteamBoiler.java
StiliClock.class
StillClock.java
stock.class
stockfppii.class
stockApp$DropTargetHandler.class

stockApp.class -

il | [»]

nel

owse LFmd | Dehug LWDrkhen[:h |

¥

nosyncpressurejava CProgram FilesiJavaijdk1.5.0thin - jlGRASP CSD {Java)

FIIE Edlt View Templates Cumpller

Run Workbench Help

BEODWmaY al@se 'I-:kfﬁiilF—M—“h—u

void RajsePressure() |

try {sleep(l00);

b

else

L}
public woid runf() |
RaisePressure(); /f/this

'

if [(SteamBoiler.pressurebauge < IteamBoiler.safe
FSiwait briefly to simulate some calculatio
 catch (Exception e) { 1}
SteamBoiler.pressureGauged= 15;
System.out.println(this.getName () + " finds pressure within limits - increases pressure™);

Fithread class to raise the pressure in the Boller
class pressure extends Thread {

thread is to raise the pressure

Limit-15)

/iraise the pressure 15 psi

This is what
caused the race
condition to occur.

System. out.println(this.getName () + ™ finds pressure too high - do nothing™)

4| M

| b

“vspLK Line:t2 cok3 Code:32 Top:

. TestT... Basic... Basic...

Displ... GetSt... numb...

GetSt...

mpile Messages |/ JGRASP Messages |/Fum 110 |

[m
End - ——--JGRASP exec:

Clear

Help

java SteamBoiler

Thread-3 finds prezssure within limits - increases pressure
Thread-29 finds pressure within limits - increases pressure
Thread-z finds prezssure within limits - increases pressure
Thread-8 finds pressure within limits - increases pressure
Thread-1 finds prezssure within limits - increases pressure
Thread-4 finds pressure within limits - increases pressure
Thread-& finds prezssure within limits - increases pressure
Thread-0 finds pressure within limits - increases pressure
Thread-5 finds prezssure within limits - increases pressure
Thread-7 finds pressure within limits - increases pressure
Gauge reads 150, the safe limit is 50 ...

EOOM

Output From Execution
lllustrating the Race Condition

[4]

Interesting Note on Race Conditions

You may remember the large North American power blackout that occurred on
August 14, 2003. Roughly 50 million people lost electrical power in a region
stretching from Michigan through Canada to New York City. It took three days
to restore service to some areas.

There were several factors that contributed to the blackout, but the official report
highlights the failure of the alarm monitoring software which was written in C++
by GE Energy. The software failure wrongly led operators to believe that all was
well, and precluded them from rebalancing the power load before the blackout
cascaded out of control.

Because the consequences of the software failure were so severe, the bug was
analyzed exhaustively. The root cause was finally identified by artificially
introducing delays in the code (just like we did in the previous example). There
were two threads that wrote to a common data structure, and through a coding
error, they could both update it simultaneously. It was a classic race condition,
and eventually the program “lost the race”, leaving the structure in an inconsistent
state. That in turn caused the alarm event handler to spin in an infinite loop,
instead of raising the alarm. The largest power failure in the history of the US
and Canada was caused by a race condition bug in some threaded C++ code.
Java is equally vulnerable to this kind of bug.

r

k r

COP 4610L: Threading Part 2 Page 10 Mark Llewellyn © gjj

Thread Synchronization
To prevent a race condition, access to the shared object must

be properly synchronized.

— Lost update problem: one thread is in the process of updating
the shared value and another thread also attempts to update the

value.

— Even worse i1s when only part of the object is updated by each
thread in which case part of the object reflects information
from one thread while another part of the same object reflects

Information from another thread.

The problem can be solved by giving one thread at a time
exclusive access to code that manipulates the shared object.
During that time, other threads desiring to manipulate the

object must be forced to walit.

COP 4610L: Threading Part 2 Page 11

Mark Llewellyn ©

k r

S/f

Thread Synchronization (cont)

When the thread with exclusive access to the object finishes
manipulating the object, one of the blocked threads will be
allowed to proceed and access the shared object.

— The next selected thread will be based on some protocol. The
most common of these is simply FCFS (priority-queue based).

In this fashion, each thread accessing the shared object
excludes all other threads from accessing the object
simultaneously. This Is the process known as mutual
exclusion.

Mutual exclusion allows the programmer to perform
thread synchronization, which coordinates access to
shared objects by concurrent threads.

L
COP 4610L: Threading Part 2 Page 12 Mark Llewellyn © gjj

Synchronization Technigues

There have been many different methods used to synchronize
concurrent processes. Some of the more common ones are:

— Test and Set Instructions. All general purpose processors now have
this kind of instruction, and it is used to build higher-level
synchronization constructs. Test and set does not block, that must be
built on top of it.

— pand v semaphores. Introduced by Dijkstra in the 1960’s and was the
main synchronization primitive for a long time. Its easy to build
semaphores from test and set instructions. Semaphores are low-level
and can be hard for programmers to read and debug. For your
Information the p is short for the Dutch words proberen te verlangen
which means to “try to decrement” and the v stands for verhogen
which means to increment.

COP 4610L: Threading Part 2 Page 13 Mark Llewellyn © S}'j

Synchronization Technigues (cont)

— Read/write Locks. These are also commonly referred to as mutexes
(although some people still use the term mutex to refer to a
semaphore.) A lock provides a simple "turnstile”: only one thread at
a time can be going through (executing in) a block protected by a
lock. Again, it is easy to build a lock from semaphores.

— Monitors. A monitor is a higher-level synchronization construct built
out of a lock plus a variable that keeps track of some related
condition, such as “the number of unconsumed bytes in the buffer”.
It is easy to build monitors from read/write locks. A monitor defines
several methods as a part of its protocol. Two of those predefined
methods are wait() and notify().

r
COP 4610L: Threading Part 2 Page 14 Mark Llewellyn © g/'j

Types of Synchronization
There are two basic types of synchronization between

threads:

1. Mutual exclusion is used to protect certain critical sections of code
from being executed simultaneously by two or more threads.

(Synchronization without cooperation.)

2. Signal-wait is used when one thread need to wait until another thread
has completed some action before continuing. (Synchronization with

cooperation.)

Java includes mechanisms for both types of synchronization.

All synchronization in Java is built around locks. Every Java
object has an associated lock. Using appropriate syntax, you
can specify that the lock for an object be locked when a method
IS invoked. Any further attempts to call a method for the locked
object by other threads cause those threads to be blocked until

the lock Is unlocked.

COP 4610L: Threading Part 2 Page 15

Mark Llewellyn ©

k r

S/f

Thread Synchronization In Java

 Any object can contain an object that implements the Lock
Interface (package java.util.concurrent. locks).

. A thread calls the Lock’s lock method to obtain the lock.

e Once a lock has been obtained by one thread the Lock

object will not allow another thread to obtain the lock until
the thread releases the lock (by iInvoking the Lock’s

un lock method).

o If there are several threads trying to invoke method lock on
the same Lock object, only one thread may obtain the lock,

with all other threads being placed into the wait state.

COP 4610L: Threading Part 2 Page 16 Mark Llewellyn © S'/

An Aside on Reentrant Locks

« Class ReentrantLock (package java.util.concurrent.locks)
IS a basic implementation of the Lock interface.

— The constructor for a ReentrantLock takes a boolean argument
that specifies whether the lock has a fairness policy. If this is set to
true, the ReentrantLock’s fairness policy states that the longest-
waiting thread will acquire the lock when it is available. If set to
false, there is no guarantee as to which waiting thread will acquire the
lock when it becomes available.

« Using a lock with a fairness policy helps avoid indefinite
postponement (starvation) but can also dramatically reduce
the overall efficiency of a program. Due to the large decrease
In performance, fair locks should be used only in necessary
circumstances.

r
COP 4610L: Threading Part 2 Page 17 Mark Llewellyn © g/‘-’

Condition Variables

If a thread that holds the lock on an object determines that it
cannot continue with Its task until some condition Is satisfied,
the thread can wait on a condition variable.

This removes the thread from contention for the processor by
placing it in a wait queue for the condition variable and
releases the lock on the object.

Condition variables must be associated with a Lock and are
created by invoking Lock method newCondition, which
returns an object that implements the Cond1tion interface.

To walt on a condition variable, the thread can call the
Condition’s awalt method (see Life Cycle of a thread In

previous set of notes).

COP 4610L: Threading Part 2 Page 18 Mark Llewellyn © %\/

Condition Variables (cont)

Invoking the awalt method, immediately releases the
assoclated Lock and places the thread in the wait state for
that Condition. Other threads can then try to obtain the
Lock.

When a runnable thread completes a task and determines that
the waiting thread can now continue, the runnable thread can
call Condition method signal to allow a thread In that
Condition’s wait queue to return to the runnable state. At this
point, the thread that transitioned from the wait state to the
runnable state can attempt to reacquire the Lock on the object.
Of course there Is no guarantee that it will be able to complete
Its task this time and the cycle may repeat.

COP 4610L: Threading Part 2 Page 19 Mark Llewellyn © %\/

Condition Variables (cont)

If multiple threads are in a Condition’s wait queue when a
signal iIs Invoked, the default implementation of
Condirtion signals the longest-waiting thread to move to

the runnable state.

If a thread calls Condition method signalAll, then all of

the threads waiting for that condition move to the runnable
state and become eligible to reacquire the Lock.

When a thread Is finished with a shared object, it must invoke
method unlock to release the Lock.

COP 4610L: Threading Part 2 Page 20 Mark Llewellyn © S}'j

Thread States With Synchronization

Already locked by
another thread

r .
| Thread attempting |

: access I

Lock obtained
by this thread

Unlock by
another thread
— one in queue
moves to
running state

Running State

Queue of threads waiting for lock

notify() by
another thread

Queue of threads waiting for notify()

wait() by this thread

unlock by this thread
does not remove it from
the running state

COP 4610L: Threading Part 2

o
Page 21 Mark Llewellyn © gjt

Deadlock

Deadlock will occur when a waiting thread (call it thread 1)
cannot proceed because It Is waliting (either directly or
Indirectly) for another thread (call it thread 2) to proceed.,
while simultaneously thread 2 cannot proceed because it is
waiting (either directly or indirectly) for thread 1 to proceed.

When multiple threads manipulate a shared object using locks,
ensure that If one thread invokes awaint to enter the wait state

for a condition variable, a separate thread eventually will
Invoke method signal to transition the waiting thread on the

condition variable back to the runnable state.

If multiple threads may be waiting on the condition variable, a separate
thread can invoke method signal Al l as a safeguard to ensure that all

of the waiting threads have another opportunity to perform their tasks

(

e

COP 4610L: Threading Part 2 Page 22 Mark Llewellyn © Lﬁ\/

Producer/Consumer Problem
Threads Without Synchronization

In a producer/consumer relationship, the producer portion of an
application generates data and stores it in a shared object, and
the consumer portion of an application reads data from the
shared object.

— Common examples are print spooling, copying data onto CDs, etc.

In a multithreaded producer/consumer relationship, a producer
thread generates data and places it in a shared object called a
buffer. A consumer thread reads data from the buffer.

What we want to consider first is how logic errors can arise if
we do not synchronize access among multiple threads
manipulating shared data.

r
COP 4610L: Threading Part 2 Page 23 Mark Llewellyn © g/'j

Producer/Consumer w/o Synchronization

The following example sets up a producer and consumer thread
utilizing a shared buffer (code is on the webpage). The
producer thread generates the integer numbers from 1 to 10,
placing the values in the shared buffer. The consumer process
reads the values in the buffer and prints the sum of all values
consumed.

Each value the producer thread writes into the buffer should be
consumed exactly once by the consumer thread. However, the
threads in this example are not synchronized.

— This means that data can be lost if the producer writes new data into
the buffer before the consumer has consumed the previous value.

— Similarly, data can be incorrectly duplicated if the consumer thread
consumes data again before the producer thread has produced the next

value.

L
COP 4610L: Threading Part 2 Page 24 Mark Llewellyn © gjj

Producer/Consumer w/o Synchronization

(cont.)

. Since the producer thread will produce the values from 1 to
10, the correct sum that should be 55.

« The consumer process will arrive at this value only If each
item produced by the producer thread is consumed exactly
once by the consumer thread. No values are missed and none
are consumed twice.

« I’ve set it up so that each thread writes to the screen what is
being produced and what is being consumed.

Note: the producer/consumer threads are put to sleep for a
random interval between 0 and 3 seconds to emphasize the
fact that in multithreaded applications, it i1s unpredictable
when each thread will perform its task and for how long it
will perform the task when it has a processor.

r
COP 4610L: Threading Part 2 Page 25 Mark Llewellyn © g/'j

// Producer®s run method stores the values 1 to 10 in buffer.
import java.util_Random;

public class Producer implements Runnable{

private static Random generator = new Random(); Producer Thread Class

private Buffer sharedlLocation; // reference to shared object

// constructor

public Producer(Buffer shared) {
sharedLocation = shared;

} // end Producer constructor

// store values from 1 to 10 in sharedLocation
public void run() {
int sum = 0;
for (int count = 1; count <= 10; count++) {
try { // sleep 0 to 3 seconds, then place value in Buffer
Thread.sleep(generator.nextint(3000)); // sleep thread
sharedLocation.set(count); // set value in buffer
sum += count; // increment sum of values
System.out.printf("\t%2d\n", sum);

} // end try Randomly
// 1T sleeping thread interrupted, print stack trace sleep the

catch (InterruptedException exception) {
exception.printStackTrace(); thread for up
} // end catch to 3 seconds

} // end for

System.out.printf("\n%s\n%s\n", "Producer done producing.",
"Terminating Producer."');
} // end method run
} 7/ end class Producer

COP 4610L: Threading Part 2 Page 26 Mark Llewellyn ©

// Consumer®™s run method loops ten times reading a value from buffer.
import java.util_Random;
public class Consumer implements Runnable {
private static Random generator = new Random(); Consumer Thread Class
private Buffer sharedLocation; // reference to shared object
// constructor
public Consumer(Buffer shared) {
sharedLocation = shared;
} // end Consumer constructor
// read sharedLocation®s value four times and sum the values
public void run() {
int sum = 0O;
for (int count = 1; count <= 10; count++) {
// sleep 0 to 3 seconds, read value from buffer and add to sum

try {
Thread.sleep(generator.nextint(3000));

sum += sharedLocation.get();
System.out.printf("\t\t\t%2d\n", sum);

Y // end try Randomly
// if sleeping thread interrupted, print stack trace sleep the
catch (InterruptedException exception) { thread for up
exception.printStackTrace(); to 3 seconds
} // end catch
} /7/ end for

System.out.printf("\n%s %d.\n%s\n",
"Consumer read values totaling™, sum, "Terminating Consumer.™);
} /7/ end method run
} 7/ end class Consumer

r
COP 4610L: Threading Part 2 Page 27 Mark Llewellyn © g/'j

I/ Buffer interface specifies methods called by Producer and Consumer.
public interface Buffer {
public void set(int value); // place int value into Buffer (WRITE)
public int get(); // return int value from Buffer (READ)
} // end interface Buffer

Buffer Interface

/I ' UnsynchronizedBuffer represents a single shared integer.
public class UnsynchronizedBuffer implements Buffer {
private int buffer = -1; // shared by producer and consumer threads
I/ place value into buffer
public void set(int value) {
System.out.printf("Producer writes\t%2d", value);
buffer = value;
} // end method set

I/ return value from buffer
public int get() {
System.out.printf("Consumer reads\t%2d", buffer);
return buffer;
} // end method get
} // end class UnsynchronizedBuffer

Unsynchronized Buffer
Class

COP 4610L: Threading Part 2 Page 28

’
Mark Llewellyn © g/';

// Application shows two threads manipulating an unsynchronized buffer.
import java.util._concurrent.ExecutorService;

import java.util._concurrent.Executors;

Producer/Consumer
public class SharedBufferTest { Driver Class

public static void main(String[] args){
// create new thread pool with two threads
ExecutorService application = Executors.newFixedThreadPool(2);

// create UnsynchronizedBuffer to store ints
Buffer sharedLocation = new UnsynchronizedBuffer();

System.out.printin(" \t\t \tSum \tSum™);
System.out.printin("Action\t\tValue\tProduced\tConsumed"”);
System.out.printin("------ \t\t---—-- \t-——-———- \t-——-———- \n");

// try to start producer and consumer giving each of them access to SharedLocation

try {
application.execute(new Producer(sharedLocation));

application.execute(new Consumer(sharedLocation));
} // end try
catch (Exception exception) {
exception.printStackTrace();
} // end catch

application.shutdown(); // terminate application when threads end
} // end main
} 7/ end class SharedBufferTest

COP 4610L: Threading Part 2 Page 29 Mark Llewellyn ©

Producer Side

Unsynchronized Case

R
_—e

Consumer Side

sharedLocation.set(count)

-~ -
- [-

» sharedLocation
(Buffer)

~

» sum += sharedLocation.get()

-
~ -

get method returns

Both the producer
and consumer

A

[running]

threads are always in
the running state —
never blocked.

—> [running]

COP 4610L: Threading Part 2

Page 30

Mark Llewellyn ©

HASE m

Project Messages 5Settings Window Tools Help

mpile Messages erRASP Messages rRun 110 |

[----jGRA43P: operation complete.

————JGRASF exec: Java SharedBufferTest

Clear
Sum Sum
Help Action Value Produced Conzumed

Producer writes 1 1

Producer writes 2 3

Consumer reads 2 2

Producer writes 3 [

Producer writes 4 10

Producer writes 5 15

Producer writes & 2l

Consumer reads [g

Producer writes 7 Z8

Producer writes g 36

Producer writes E 45

Consumer reads 9 17

Consumer reads 9 Z6

Consumer reads 9 35

Consumer reads E 44

Producer writes 10

Producer done producing. i }
Terminating Producer. The unsynchronized threads did not
Consumer reads 10 L4

Consumer reads 10 64 produce the same sum. The producer
consuuer reace 10 74 produced values that sum to 55, but the

onsumer reads 10 gd

consumer consumed values that sum to
I: d l l 1| -
Terminating Conomuer. 84! Notice that the consumer read the
_ _ both value 9 and 10 four times but failed to
L ----JGREALSP: operation complete.
w | read the value of several values at all (e.g.
1 and 5).
1 I [¥

HASE m

Project Messages 5Settings Window Tools Help

mpile Messages erRASP Messages rRun 110 |

———-JGR43P: operation complete.

Clear - ——--JGEALSP exec: java SharedBufferTest
HEIF . Sum Sum
- Action Value Produced Conzumed

Consumer reads -1 -1

Producer writes 1 1

Producer writes 2 3

Consumer reads 2 1

Consumer reads 2 3 ” -

Producer writes 3 & In this execution, the sum
Producer writes 4 10

Producer writes 5 15 produced by the consumer
consuuer reace 2 g is much closer to the correct
onsumer reads a 13 .

Producer writes & 2l reSUIt, but still off because
Consumer reads & 19

Producer writes 7 2 the consumer read the
Consumer reads 7 26 values 2 and 5 twice and
Producer writes g 36 .

Consumer reads g 34 failed to read the values 1, 3
Producer writes 9 45

Consumer reads] 43 and 4 at all.

Producer writes 10

Producer done producing.
Terminating Producer.
Consumer reads 10

Consumer read walues totaling 53.
Terminating Consumer.

—-——-JGRAZP: operation complete.

|

1 I [¥

Il SynchronizedBuffer synchronizes access to a single shared integer.
import java.util.concurrent.locks.Lock;

import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.Condition;

public class SynchronizedBuffer implements Buffer

Synchronized Buffer
Class

No fairness policy needed since only a
single producer thread and single
consumer thread

{
/I Lock to control synchronization with this buffer
private Lock accessLock = new ReentrantLock();

// condition variables to control reading and writing
private Condition canWrite = accessLock.newCondition(); N
private Condition canRead = accessLock.newCondition();
private int buffer = -1; // shared by producer and consumer threads
private boolean occupied = false; // whether buffer is occupied
I/ place int value into buffer
public void set(int value)
{ /
accessLock.lock(); // lock this object
// output thread information and buffer information, then wait
try
{

I/ while buffer is not empty, place thread in waiting state
while (occupied)
{

System.out.printin(*Producer tries to write.");

Acquire lock

displayState("Buffer full. Producer waits.");

Condition variables on the lock.
Condition canWrite contains a
queue for threads waiting to
write while the buffer is full. If
the buffer is full the Producer
calls method await on this
condition. When the Consumer
reads data from a full buffer, it
calls method signal on this
Condition. Condition canRead
contains a queue for threads
waiting while the buffer is
empty. If the buffer is empty the
Consumer calls method await
on this Condition. When the
Producer writes to the empty
buffer, it will call method signal
on this Condition.

canWrite.await(); // wait until buffer is empty
} // end while

COP 4610L: Threading Part 2 Page 33

Mark Llewellyn ©

buffer = value; // set new buffer value
/l indicate producer cannot store another value
/[until consumer retrieves current buffer value
occupied = true;
displayState("Producer writes " + buffer);
/I signal thread waiting to read from buffer

canRead.signal(); <

} // end try

catch (InterruptedException exception) {
exception.printStackTrace();

} // end catch

finally { /

accessLock.unlock(); // unlock this object
} // end finally
} // end method set

/I return value from buffer
public int get() {

int readValue = 0; // initialize value read from buffer
accessLock.lock(); // lock this object /

Signal Consumer thread that a value
has been produced and can be read.

Unlock object before exiting method

Acquire lock on the buffer

// output thread information and buffer information, then wait

try {

/l while no data to read, place thread in waiting state

while (loccupied) {
System.out.printIn("Consumer tries to read.")

displayState("Buffer empty. Consumer waits.");

canRead.await(); // wait until buffer is full
} // end while

Producer

Consumer must wait until a value

/ has been produced by the
Producer. Await signal by

COP 4610L: Threading Part 2

Page 34

Mark Llewellyn ©

&

/l indicate that producer can store another value
// because consumer just retrieved buffer value
occupied = false;
readValue = buffer; // retrieve value from buffer
displayState("Consumer reads " + readValue);
/I signal thread waiting for buffer to be empty

canWrite.signal(); <
}// end try
/I if waiting thread interrupted, print stack trace
catch (InterruptedException exception) {
exception.printStackTrace();
} // end catch

finally { /

accessLock.unlock(); // unlock this object
} // end finally

return readValue;
} // end method get

/I display current operation and buffer state
public void displayState(String operation)
{

Signal waiting Producer that
the buffer is empty and it can
write

Make sure lock is released

System.out.printf("%-40s%d\t\t\t\t%b\n", operation, buffer,

occupied);
} // end method displayState
} // end class SynchronizedBuffer

COP 4610L: Threading Part 2

Page 35

Mark Llewellyn ©

/I Application shows two threads manipulating a synchronized buffer.
import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

public class SharedBufferTest2

{

public static void main(String[] args)

{

/I create new thread pool with two threads
ExecutorService application = Executors.newFixedThreadPool(2);

/I create SynchronizedBuffer to store ints — Only change between
Buffer sharedLocation = new SynchronizedBuffer();

System.out.printin(*Using Standard Locking");
System.out.printf("%-40s%s\t\t%s\n%-40s%s\n\n", "Operation”,
"Buffer Contents", "Occupied", "--------- M M- \t\t--------

try { // try to start producer and consumer
application.execute(new Producer(sharedLocation));
application.execute(new Consumer(sharedLocation));

} // end try

catch (Exception exception)

{
exception.printStackTrace();

} // end catch

application.shutdown();
} // end main
} // end class SharedBufferTest2

Driver Class For lllustrating
Synchronization In
Producer/Consumer Problem

SharedBufferTest for
unsynchronized version

COP 4610L: Threading Part 2 Page 36

r
Mark Llewellyn © g)j

Synchronized Case

Producer Side Consumer Side

lock acquisition queue

/ m
accessLock.lock(); //acquire lock accessLock.lock(); //facquire lock

released

released

’

while (occupied) //buffer not empty

canWrite.await(); block on condition

signal from consumer

buffer = value; //perform write _

N

~./ .
X write
./ =

canWrite condition queue

e
» . ..

wait

signal from producer

;

while ('occupied) //buffer empty

canRead.await(); block

e,

e~

\..j

canRead condition queue

./.

~/.

\4

occupied = false; //indicate read

i
i
i
!
/

occupied = true; //indicate write read _» readValue= buffer;
canRead.signal(); //signal thread/. \\‘Q/// canWrite.signal(); //signal threac'l.
accessLock.unlock(); //release lock sharedl}]?cation accessLock.unlock(); //release lock
set method returns iuer)/ get method returns
([\
COP 4610L: Threading Part 2 Page 37 Mark Llewellyn © g/'j

Producer Thread

State Diagram — Synchronized Version

‘ Running

buffer full (occupied)

canWrite condition queue
>

A

canWrite signaled

lock request fails
accessLock queue

ock released >

A\ 4

lock request fails

4{ Running

buffer empt
by canRead condition queue
>

Consumer Thread

canRead signaled

K Blocked j

COP 4610L: Threading Part 2

Page 38 Mark Llewellyn ©

HASE m

Project Messages 5Settings Window Tools Help

mpile Messages erRASP Messages rRun 110 |

Operation Buffer Contents Oocoupied
Clear Producer writes 1 1 true
Producer triez to write.
Help Buffer full. Producer waits. 1 Lrue
- Consumer reads 1 1 falze
Producer writes 2 2 true
Consumer reads 2 2 falze
Producer writes 3 3 Lrue
Consumer reads 3 3 falze
Producer writes 4 4 true
Producer triez to write.
Buffer full. Producer waits. L) Lrue
Consumer reads 4 B falze
Producer writes 5 5 true
Producer triez to write.
Buffer full. Producer waits. 5 Lrue
Consumer reads o 5 falze
Producer writes © =) true
Producer triez to write.
Buffer full. Producer waits. & Lrue
Cohsumer reads & & falze
Producer writes 7 7 true
Producer triez to write.
Buffer full. Producer waits. 7 Lrue
Consumer reads 7 7 falze
Producer writes 2 a true
Consumer reads 8 g falze
Producer writes 9 9 Lrue
Consumer reads 9 9 falze
Consumer tries to read.
Buffer empty. Consumer waitsa. =] falze
Producer writes 10 10 Lrue
Cohsumer reads 10 10 falze
Producer done producing.
Terminating Producer.
Both the Producer and Consumer
T - threads produced the same sum —
Terminating Consumer. .
Producer produced walues totali x@ SynChronlzed threads
1 Il | I

HASE m

Project Messages Settings Window Tools UL Help

mpile Messages erRASP Messages rRun 110 |

End Operation Buffer Contents Oocoupied
Clear Producer writes 1 1 true
[Consumer readsz 1 1 falze
Help Producer writes 2 z Lrue
- Consumer reads 2 2 falze
Consumer tries to read.
Buffer empty. Consumer waitsa. 2 falze
Producer writes 3 3 Lrue
Consumer reads 3 3 falze
Consumer tries to read.
Buffer empty. Consumer waitsa. 3 falze
Producer writes 4 L) Lrue
Consumer reads 4 B falze
Consumer tries to read.
Buffer empty. Consumer waitsa. L) falze
Producer writes 5 5 Lrue
Consumer reads o 5 falze
Consumer tries to read.
Buffer empty. Consumer waitsa.) falze
Producer writes & & Lrue
Cohsumer reads & & falze
Consumer tries to read.
Buffer empty. Consumer waitsa. & falze
Producer writes 7 7 Lrue
Consumer reads 7 7 falze
Producer writes 2 a true
Consumer reads 8 g falze
Producer writes 9 9 Lrue
Producer tries to write,
Buffer full. Producer waits. =] true
Consumer readsz 9 =] falze
Producer writes 10 10 Lrue
Producer done producing.
Terminating Producer.
Producer produced wvalues totaling: 55
Consumer reads 10 10 false
Consumer read walues totaling 55.
1 Il [¥

Monitors and Monitor Locks

Another way to perform synchronization Is to use Java’s built-in
monitors. Every object has a monitor. Strictly speaking, the monitor iIs
not allocated unless it is used.

A monitor allows one thread at a time to execute inside a synchronized
statement on the object. This Is accomplished by acquiring a lock on the
object when the program enters the synchronized statement.

synchronized (object)

{

statements
} /lend synchronized statement

Where object is the object whose monitor lock will be acquired.

If there are several synchronized statements attempting to execute on an
object at the same time, only one of them may be active on the object at
once — all the other threads attempting to enter a synchronized statement
on the same object are placed into the blocked state (see next page).

COP 4610L: Threading Part 2 Page 41 Mark Llewellyn © g)‘*

Monitors and Monitor Locks (cont.)

. When a synchronized statement finishes executing, the monitor lock
on the object Is released and the highest priority blocked thread
attempting to enter a synchronized statement proceeds.

. Java also allows synchronized methods. A synchronized method is
equivalent to a synchronized statement enclosing the entire body of a
method.

. If a thread obtains the monitor lock on an object and then discovers
that it cannot continue with its task until some condition is satisfied,
the thread can invoke Object method wait, releasing the monitor

lock on the object. This will place the thread in the walit state.

. When a thread executing a synchronized statement completes or
satisfies the condition on which another thread may be waiting, it can
Invoke Object method noti1fy to allow a waiting thread to transition

to the blocked state again.

L
COP 4610L: Threading Part 2 Page 42 Mark Llewellyn © gjj

Thread Class to Read Steam Boiler Pressure Gauge and
Increase the Pressure if Within Range

Synchronized Method Version

/lthread class to raise the pressure in the Boiler
class pressure extends Thread {
synchronized void RaisePressure() {
If (SteamBoiler.pressureGauge < SteamBoiler.safetyLimit-15) {

/Iwait briefly to simulate some calculations
try {sleep(100); } catch (Exceptione) { }
SteamBoiler.pressureGauge+= 15; //raise the pressure 15 psi
System.out.printin("Thread " + getName() + " finds pressure within limits

- increases pressure");

}

else ; //the pressure is too high - do nothing
¥
public void run() {
RaisePressure(); //this thread is to raise the pressure

}
}

COP 4610L: Threading Part 2 Page 43 Mark Llewellyn ©

RASP

Project Messages Settings Window Tools UL Help

iles

| |50rt By Hame

"P

. pressure.java C:'Program Files'Java'jdk1.5.0hin - jJGRASP CSD {Java)

= | 4 | R || Bookmarks

rogram Files\Javajdk1.5.0hin

PATET java

PaintPanel $1.class
PaintPanel.class
PaintPanel.java
PanelDemo.class
PanelDemo.java
PanelFrame.class
PanelFrame.java

parser.c
policytool.exe
portland.wth

pressure.class

Pressure.java

PrintChar.class
PrintHum.class
PrintTask.class

|>T

FIIE Edlt ‘-J"ew Templates Compiler Bun Workbench Help

D&Y adaé 1600 0E XDBa

Fithread class to raise the pressure in the Boller
class pressure extends Thread {

static Object 0 = new Object():

synchronized vwoid BaisePressure()] {
synchronizedi0) {

'

if

b

[3teamBoiler.pressurefauge < 3teanBoiler.safetyLimit-15) !

fiwait briefly to simulate some calculations

Lry {sleep(l00); } catch (Exception e) { }

SteamBoiler.pressurebauge+= 157 //raizse the pressure 15 psl
System.out.printlnithis.getName () + " finds pressure within limits - increases pressure™);

else

System. out.println(this.getlane () + " finds pressure too high - dnesLnuthing”];

1//end aynchronized block

public woid runf() {
RaisePressure(); //this thread iz to raise the pressure

4

Il | | b

“lovs BLK Line:13 Col73 Code32 Top:

owWse L Find

|~ Debug | Workbench |

Basi... Basi.. Displ... | [%] Gets... Addi... | [&] Gets... | [&] nosy...

mpile Messages erHASP Messanges |/Fum 10 |

End

Clear

Help

Thread-0
Thread-1
Thread-2
Thread-3
Thread-4
Thread-5
Thread-&
Thread-7
Thread-&
Thread-29

finds=
finds
finds
findsz
finds=
finds
finds
findsz
finds=
finds

Gauge reads 45,

pressure within limits - increases pressure
pressure within limits - increases pressure
pressure within limits - increases pressure
pressure too high - does nothing
pressure too high - does nothing
pressure too high - does nothing
pressure too high - does nothing
pressure too high - does nothing
pressure too high - does nothing
prezsure too high - doez nothing
the safe limit is 50... Systen Nominal

[4]

I [b

Mutual Exclusion Over a Block of Statements

 Applying mutual exclusion to a block of statements rather
than to an entire class or an entire method Is handled in much
the same manner, by attaching the keyword synchronized
before a block of code.

 You must explicitly mention in parentheses the object whose
lock must be acquired before the block can be entered.

« The following example illustrates mutual exclusion over a
block using the pressure gauge example on pages 7 and 8.

r
COP 4610L: Threading Part 2 Page 45 Mark Llewellyn © g/'j

Thread Class to Read Steam Boiler Pressure Gauge and
Increase the Pressure if Within Range — Synchronized Version

/lthread class to raise the pressure in the Boiler _
class pressure extends Thread { Synchronized statement
static Object O = new Object():; requires an Object to lock.
void RaisePressure() {
/ synchronized(0O) { \
if (SteamBoiler.pressureGauge < SteamBoiler.safetyLimit-15) {

/Iwait briefly to simulate some calculations
try {sleep(100); } catch (Exceptione) { }

SteamBoiler.pressureGauge+= 15; //raise the pressure 15 psi

System.out.printin(*Thread " + this.getName() + " finds pressure within limits - increases pressure™);

}
else

System.out.printIn(*Thread" + this.getName() + " finds pressure too high - do nothing");

} //lend synchronized block

\2 /

public void run() {
RaisePressure(); //this thread is to raise the pressure N\

} Synchronized
} block

r
COP 4610L: Threading Part 2 Page 46 Mark Llewellyn © g/'j

LML Help

Project Messages Settings Window Tools

iles w | |[Sort By Hame

+[+][r

Bookmarks

rogram Files\Javajdk1.5.0hin

Coim
images
AccountWithSyncMew. java
Addition.class

Addition.java

appletviewer.exe

apt.exe

astoria.wth

BankSimulation$1.class
BankSimulation$Account.class
BankSimulation$DepositTask.class
BankSimulation fWithdrawTask.class
BankSimulation.class

(] »] 4

[4]

4
¥

pressure.java C:'Program FilesiJavaijdk1.5.0%hin - jJGRASP CSD {Java)
FIIE! Edlt View Templates Cumpller Run Workhench Help

B N&Y aEEE $10860HE XDR A

J/thread class to raise the pressure in the Boiler
class pressure extends Thread {
static Object 0 = new Objecti):
vold RaisePressure(] |
synchronized() {
if [(2teamBoiler.pressureGauge < SteamBoiler.safetylimitc-15) §
AAwait briefly to simulate some caloulations
Ery {zleep(l00); } catch (Exception e) { }
SGteamBoiler.pressurelrauge+= 15; //raise thel|pressure 15 psi
Systenm.out.println{"Thread " + this.getName|) + " finds pressure within limits - incr

'

el=e
Systen.out.println("Thread”™ + this.getName()|+ " finds pressure too high - do nothing
VA Jend aynchronized block

4] Il
]Zi*-.rs: ﬁLH Line:B Colks Code:116 Top

| b

owWse | Find | Dehug LWurkhen[:h | Eressure....
e
mpile Messages | IGRASP Messanes |’Fum 10 | \

End i

Thread Thread-0 finds pressure within limits - increases pressure
Thread Thread-1 findzs pressure within limits - increazezs pressure

Clear Thread Thread-:2 finds pressure within limits - increases pressure

e ThreadThread-3 findszs pressure too high - do nothing

Help %Ieagﬁreag—g E:i.ngs pressure too Elgﬁ u:dlc- nu:uﬁ:i.ng EaCh thread Sleeps for

it o] rea read- inds pressure too hig o nothing 1
ThreadThread-6 finds pressure too high do nothing 100 msec before CheCkmg
ThreadThread-7 finds pressure too high - do nothing pressure gauge
ThreadThread-8 finds pressure too high do nothing
ThreadThread-9 findz prezsure too high do nothing
Gauge reads 45, the safe limit is 50

-—--iGRASP:

|

operation complete.

[4]

LML Help

Project Messages Settings Window Tools

iles -

+[+][r
rogram Files\Javaijdk1.5.0'bin |

Sort By Hame

Bookmarks

com
images

AccountWithSyncMew. java
Addition.class

Addition.java

appletviewer.exe

apt.exe

astoria.wth

BankSimulation$1.class
BankSimulation$Account.class
BankSimulation$DepositTask.class
BankSimulationfWithdrawTask.class
BankSimulation.class

i |

(] »] 4

[4]

owWse | Find | Dehug LWurkhen[:h |

4
¥

pressure.java C:'Program FilesiJavaijdk1.5.0%hin - jJGRASP CSD {Java)
FIIE! Edlt View Templates Cumpller Run Workhench Help

B N&Y aEEE $10860HE XDR A

J/thread class to raise the pressure in the Boiler
class pressure extends Thread {
static Object 0 = new Objecti):
vold RaisePressure(] |
synchronized() {
if [(2teamBoiler.pressureGauge < SteamBoiler.safetylimitc-15) §
Ffwmait briefly to simulate some caloulations
fftry {2leep(100); } catch (Exception e) { }
SdteamBoiler.pressurelauge+= 15; //raise the
System.out.println("Thread " + this.getName |

Y
ﬁressure 15 pai
+ " finds pressure within linits - incrk

'

el=e
Systen. out.println(" Thread” + thiz.getName()
VA Jend aynchronized block

4] Il
]Zi*-.rs: ﬁLH Line:B Coly Code:116 Top:

H " finds pressure too high - do nothing

| b

pressure....

mpile Messages | IGRASP Messanes |’Fum 10 |

End i - ——-—-]GBRASPF exec: java SteanBoiler
— Thread Thread-0 findz pressure within limits - increazezs pressure
Clear Thread Thread-1 finds pressure within limits - increases pressure
Thread Thread-& finds pressure within limits - increases pressure
Hel ThreadThread-2 finds pressure too high - do nothing H H
L ThreadThread-7 findz pressure too high - do nothing EaCh thread Immedlately
ThreadThread-3 finds pressure too high - do nothing checks pressure gauge.
ThreadThread-5 findszs pressure too high - do nothing
ThreadThread-4 finds pressure too high - do nothing
ThreadThread-8 findz pressure too high - do nothing
ThreadThread-2 finds pressure too high - do nothing
Gauge reads 45, the safe limit is 50
Ll —----]GBA3P: operation complete.
[4] ll | b

Caution When Using Synchronization

As with any multi-threaded application, care must be taken
when using synchronization to achieve the desired effect and
not introduce some serious defect in the application.

Consider the variation of the pressure gauge example that
we’ve been dealing with on the following page. Study the
code carefully and try to determine if it will achieve the same
effect as the previous version of the code.

Is it correct? Why or why not?

No! The “this” object is one of the 10 different threads that are created.
Each thread will successfully grab its own lock, and there will be no
exclusion between the different threads.

Synchronization excludes threads working on the same object; it does
not synchronize the same method on different objects!

COP 4610L: Threading Part 2 Page 49 Mark Llewellyn © S}'j

Does this code correctly synchronize the pressure gauge reading threads?

/lthread class to raise the pressure in the Boiler
class pressure extends Thread {

synchronized void RaisePressure() {

If (SteamBoiler.pressureGauge < SteamBoiler.safetyLimit-15) {
/Iwait briefly to simulate some calculations
try {sleep(100); } catch (Exceptione) { }

SteamBoiler.pressureGauge+= 15; //raise the pressure 15 psi

System.out.printin(*Thread " + this.getName() + " finds pressure within limits - increases pressure™);

b
else

System.out.printIn(*Thread" + this.getName() + " finds pressure too high - do nothing");

¥
public void run() {

RaisePressure(); //this thread is to raise the pressure

}
}

P
COP 4610L: Threading Part 2 Page 50 Mark Llewellyn © g)u

